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Joao Magalhaes - Short bio pekE
jimag@fct.unl.pt
Full Professor, NOVA FCT

Co-Director of the CMU Portugal Partnership
Head of the Multimodal Systems Group, NOVA LINCS

My research is focused on text and image understanding Al algorithms and making
information accessible through search and conversational systems.

| am keen to explore the limits of Al algorithms in real-world problems across different
domains.

Throughout the years, my group has collaborated with world leading research institutions,
e.g., Amazon, Google, BBC, Farfetch, VisionBox, CMU, Queen Mary.
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Topics

1. PROGRAM STRUCTURE
2. WHAT IS Al + ML + DS?
3. BRAINSTORM: APPLICATIONS AND USE CASES

4, LABORATORY SETUP
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Program Structure

Carnegie :

TECNICO f iénci
vellon 5[] TREA0R C| st NSVA
Portugal StacEa TG00




G @

Academy

Learning outcomes: Knowledge

« Understand the nature and types of data problems.
» Understand the different challenges in an Al/ML/DS project.

« Understand the capacity and limits of the different family of
algorithms.
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Learning outcomes: Know-how

* |dentify the challenges of different data types

« Numerical data / Dates / Categorical data / Text / Natural Language /
Geographical data / Vision dat

* Design a data-driven end-to-end solution
* Integrate different algorithms

* Measure progress
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[.earning outcomes: Soft-skills

« Understand user needs
» Set expectations
* |dentify required data
* Recognize “impossible missions”

 Build a team based on the required skills

 Estimate a project’'s implementation time, computing budgets and
data requirements
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Program structure

Hands-on

Capstone project

Domain’s
specific Al
methods

Formative
Al skills
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Program structure

+There are 3 core courses BN
ourse ecturer hours ECTS

Foundations of

* These provide you with the basic bata Science
concepts and tools. Machineleaning Ul 30

Data Collection and
Pre-Processing

David Semedo

Cétia Pesquita 30 2

« Each course will have an invited talk
by a CMU faculty or industry expert.
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Foundations of Data Science

e |ntroduction to Data Science

e Python Programming for Data Science

e Statistics and Probability
Prof. David Semedo

e Data Preparation and Processing with Pandas

e Machine Learning Fundamentals

e Model Evaluation and Selection

e Data Visualization

Carnegie
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Machine Learning

e Introduction to Machine Learning

e Supervised Learning

e Unsupervised Learning

e Feature Engineering and Selection

e Model Evaluation and Validation

e Regression problems (linear regression)
e Support Vector Machines

e Decision Trees and Random Forests

e Association Rules Prof. David Semed
rot. vavil emedo

e Neural Networks

Carnegie

TECNICO F iénci
Mcﬂonﬁlg @ LISBOA C |5 NU'VA -

Portugal




[«
cMU[G

Portugal

Academy

Data Collection and Pre-Processing

e Types of Data and Sources

e Data Collection Techniques

e Data Quality and Validation
Prof. Catia Pesquita

e Data Pre-processing Technigques

e Handling Categorical and Numerical Data

e Data Integration and Fusion

e Data Sampling and Imputation

e Best Practices and Case Studies

Carnegie
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Program structure

* The optional courses lets you
specialize on:
 Text and language data
« Complex data
Al system engineering

« Capstone Project:
 Lectured by all lecturers
« Create and test a real system

Carnegie
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hours

Multimodal Generative Al Jodo Magalhaes
Vision and Language Bruno Martins 18 1
Complex Data Analysis André Falcao 18 1
Cloud-based Nuno Preguica & 18 1
Data Processing Rodrigo Rodrigues
Information visualization Sandra Gama
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Language and Vision

» Natural Language Processing (NLP) Fundamentals

 Text Classification and Sentiment Analysis

« Large Language Models

» Computer Vision (CV) fundamentals

» Image Classification and Object Detection

« Large Multimodal Models

* Image Captioning, Visual Question Answering and Multimodal Search

» Advanced Topics and Emerging Trends

Prof. Jodo Magalhaes

Carnegie :
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Multimodal Generative Al

« LLMs

Prompt engineering
RAG

Image Captioning

Visual Question Answering

Image generation

Advanced Topics and Emerging Trends

Prof. Jodo Magalhaes
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Information Visualization

» Explore data types and appropriate visualization techniques.
* Interactive aspects and visual perception principles.

« Master visualization tools and techniques for storytelling. "
« Handle data complexity and visualization uncertainty. Prof, Sandra Gama
» Learn to evaluate the effectiveness and ethics of visualizations,

» User experience assessments and future trends.
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Cloud-based Data Processing

High performance data analytics.

Large scale data analytics.

Stream Processing and Real-time Analytics |
Cloud-based Data Storage. Prof. Rodrigo Rodrigues

Machine Learning and Al on the Cloud
Security, Scalability, Performance, and Cost Optimization

Prof. Nuno Preguica

TECNICO C iEnci
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Complex Data Analysis

» (Graph data
« Social Network Analysis

 Time Series Analysis |
« Geospatial Data Analysis Prof. André Falciio

Carnegie

TECNICO ¢ Cignci
Nielon 18 @ LISBOA C | Siincie N'VA 19

Portugal




[«
cMU[G

Portugal

Academy

Whatis AI - ML + DS?
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What is “the” algorithm?

Human request :>
i Answer
Real-world data :> MagIC :>

examples

Training data,
documents, rules,
knowledge, etc.
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Time To Plateau Will Be Reached: (O <2yrs. ) (O 2-5yrs. ) (. 5-10 yrs.) (A >10 yrs.)

Al Engineering

Responsible Al Edge Al

Foundation Models
Synthetic Data
ModelOps
Generative Al

Prompt Engineering -
Al TRiSM

Sovereign Al

Artificial General Intelligence Neuromorphic Computing

Composite Al Smart Robots

Neuro-Symbolic Al
Decision Intelligence
Al-Ready Data
Causal Al

Al Simulation

g Computer Vision

EXPECTATIONS

Multiagent Systems

Embodied Al

First-Principles Al
Intelligent Applications

Quantum Al
Autonomic Systems Knowledge Graphs

Autonomous Vehicles

Cloud Al Services

As of June 2024

Innovation Peak of Inflated (O Trough of ® Slope of ® Plateau of (®
Trigger Expectations Disillusionment Enlightenment Productivity
TIME

Mellor & TECNICO
LISBOA
Portugal

Ciéncias N . VA

ULisboa

=
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TI?I/I/NKING,

FASTwSLOW

S
DANIEL

KAHNEMAN

WINNER OF 7 THE NOBEL PRI ZE IN ECONOMICS

Readings

Thinking, Fast and Slow in Al

https://arxiv.org/pdf/2110.01834.pdf
https://arxiv.org/pdf/2010.06002.pdf

“PEBLY DONINGES BEMTSTIFIES lltlll LEARNING AND SHONS HOW WONDROUS
(2. AND EXEITING THE FRTURE WILL BE." -WALTER ISAACSOK

THE MASTER
ALGORTHN

- HoW THEQUESTFOR
- THEUTMATE
maums MACHINE WILL

 REMAKE OUR WORLD

mew DOMINGE

Carnegie
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Al Project Planning
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What is data project planification?

* “Question first approach”:
» A well-defined problem should be the priority.
« Considerations about data, method, etc. come later.

* Focus on the key issues:
 Look for key issues first and then expand.

ar
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Four project types

What is the problem?

Known UnKnown
. Known Optimization Insight
Which method to use?
UnKnown Solution Discovery
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Value vs Time
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Drop in

value Actionable
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Time
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Value vs Time

Drop in
value

r 1 Time
\ﬁ_!

Delay in
time
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Consliderations at the planification phase

1. How to acquire the data and which method to use. |

2. Explore the use cases and preexisting solutions. .

3. ldentify potential hurdles and plan ahead. E

4. Management of updates and actualizations.

Structured Unstru:cured
Semi-structured
-
vl e [PTENS [Csse NWVA
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CRISP-DM

Cross Industry Standard Process for Data Mining

Data
understanding

Iterati Business Modellin
eration understanding W 8

Deployment Evaluation

Data preparation

» Structured approach to planning a data mining project.

Carnegie
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Cross Industry Standard Process for Data Mining

Data Dat ti

understanding ata preparation

. Business - Modelli
lteration understanding W odelling
Deployment Evaluation
» Business understanding: analysis of business objectives and needs.
Carnegie
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Cross Industry Standard Process for Data Mining
Data Dat ti
understanding ata preparation
. Business - Modelli
lteration understanding W odelling

Deployment Evaluation

» Data understanding: exploratory analysis to gain further understanding of the gathered data.
Carnegie

Mellon
Portugaﬁg
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Cross Industry Standard Process for Data Mining
Data Dat i
understanding ata preparation
. Business - Modelli
Iteration T EEE W odelling
Deployment Evaluation
» Data preparation: cleaning, formatting, etc. of the data using the insight gained from the previous steps.
Carnegie
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Cross Industry Standard Process for Data Mining
Data Dat i
understanding ata preparation
. Business - Modelli
Iteration S e W odelling
Deployment Evaluation
» Modelling: involves selection, optimization and streamlining a predictive model.
Carnegie
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Cross Industry Standard Process for Data Mining
Data Dat ti
understanding ata preparation
) Business - Modelli
lteration understanding W odelling
Deployment Evaluation
» Evaluation: the model from the previous step is put to test in a realistic scenario.
Carnegie
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Cross Industry Standard Process for Data Mining
Data .
e Data preparation
I i Business - Modellin
UL understanding W 8
Deployment Evaluation
» Deployment: the system implemented in a usable format conforming with the business requirements.
Carnegie
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Searching for Project Ideas

* Top-Down approach
* When the problem is already well defined Known UnKnown

Known Optimization InSight

« Bottom-Up approach
» The problem needs to be defined UnKnown Sofiion Disgyeny

 through exploration of data
Top-Down Bottom-Up

Approach Approach

Carnegie
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Top-Down approach - Design Thinking

* Five steps: Define, Discover, Analyze, |[deate & Prototype, and Test.
e |terations of convergence and divergence.

Ideate &
Prototype
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Top-down approach: Prioritizing ideas

Easy Highest Priority
N

Low Impact < > High Impact

IV 1

v
Lowest Priority Difficult

Carnegie
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Bottom-up approach

() - Raw data

» Data Exploration:

 Explore the raw data to find - Exploration
valuable problems and project ideas.

Yoy
$$3

- Value (project ideas)
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Measuring Success

Carnegie :
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Innovation Lifecycle

ﬁ PILOTING/
DEMONSTRATION _\I

TESTING/ NEW PRODUCTS/
SCALE-UP SERVICES
ENGINEERING DISCOVERY
DEVELOPMENT RESEARCH
APPLIED IDEA GENERATION/

RESEARCH &—— DEVELOPMENT

Carnegie :
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From theoretical models to experimental models

* |s the fundamental law known?
* Yes: Electromagnetism, transistor, have a sound theoretical model.

« No: shopping patterns, vision, language, etc. have no fundamental laws.

ar
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From experimental model to the deployed model

* Every model is flawed by design.
* The true model is unknown.

* The best possible model is the one that best approximates the
observed data.
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Validating the model

Laboratory Real-world

& 4 @
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[.ab evaluation

 Ad-hoc
Initial evaluations
* Focus Group

 Toy Datasets
e Real World Datasets

} Reproducible evaluations

Carnegie
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Ad-hoc

* Developers, Scientists, Quality Assurers and other people dream
up data, enter them into the system and eyeball the results.

» Feedback is usually broad and nonspecific, as in “this sample the
result was good” or “the results suck”.

* Pros: Low initial cost, low startup costs, gives a general overall
sense of the system.

« Cons: Not repeatable and not reliable. Doesn’t produce measures.

Carneg -
Mellon W TECNICO | ciencias INIBVA
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Focus Groups

» Gather a set of real users and have them interact with the system
over some period of time. Log everything they do and explicitly ask
them for feedback.

* Pros: Feedback and logs are quite useful, especially if users feel
iInvested in the process.

« Cons: The results may not be extrapolated to broader audience,
depending on how well the users represent your target audience.
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Toy Datasets

 Toy datasets usually have a well behaved sample of the real problem.

* Pros: Good for sanity checks and proof of concepts

« Cons: Requires other testing methodologies. Doing well in the dataset doesn't
necessarily translate to doing well in real-life.

Carnegie
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Real-world Datasets

* Run a relevance study using a set of queries, documents and relevance
judgments created by your group or a third-party group.

* Pros: Relatively easy to use, test and compare to previous runs. Completely
repeatable. Good as a part of a larger evaluation.

« Cons: Doing well in the dataset doesn’t necessarily translate to doing well in
real-life.

TECNICO iznei
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Deployed evaluations

* Log Analysis of a Beta System ) |
e A/B testing Initial evaluations

« Empirical Testing a Live System
In live systems
« Monitoring a Live System '
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[Log Analysis on a Beta System

* Deploy a live system to a large audience. You should only do this once you
are reasonably confident things work well.

* |t is imperative to have good logging in place first, which means thinking
about the things your want to log, such as queries, results, clickthrough rates,
etc.

* Finally, invite feedback from your users.

* Pros: Very close to real-word.
« Cons: Expensive. Maybe difficult to reproduce.

TECNICO ianei
@ LISBOA C | Siacies N.VA 52
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A/B Testing

« Assign a percentage of users to go to one system, while the other percentage
uses an alternate system.

 Evaluate the choices made by those in the A group and those in the B group
to see if one group had better results than the other.

* |f feasible, have the users in each group rate the results.

* Pros: Combine with log analysis to get a good picture of what people prefer.
« Cons: Requires setting up and maintaining two systems in production.

ar
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° FU”
A/B testing populatior
O.0 0.0 0,0
@) O~Nr—0™
Fahilalia
iy
50% Ell 9;]" 50%
e r=—~| .
Algorithm = <% O _ O fQQ% E|®_| Algorithm
variation A || ®Vc|| K?Q{'W ' ‘__IT_L“ variation B
75% 65%
SUCCESS success
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Conversational Al for Complex Manual Tasks

» Assistant’s behavior is grounded on an
arbitrarily selected task. Task script

» Each task requires a set of resources and is step,
organized into a sequence of steps.

_— g

5\.‘

‘o
L

« Users wish to navigate the task steps. step, - e
» Users ask guestions about a task action, —
element or video. step,

I
step, ‘

it Dl

Manual task

Carnegie :
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User ratings of 5 different Amazon Alexa Systems

Number
H of Percentage
5 different Avg Feedback Rating : -
Conversations of

SySte ms Completed

95% C.I. Week-Ago L7d !
Conversations

i e 3.6 +0.26 3.23 3.53 2894 38.5%
2 3.21 +0.34 3.14 2.71 2872 33.6%
3 2.98 +0.31 3.0 3.36 2647 29.7%
4 2.84 + 0.60 2.93 3.0 3141 17.1%
5 2.67 +0.26 2.49 3.1 2882 18.1%

Average - 3.14 2887.2

Average rating Number of user tests
over last 7 days over the last 7 days
Carnegie : I
Vellon 3, [ TR [C] st NWVA 56




ortug Academy

Continuous Testing of a Live System

« Given an existing system, select the top X inputs in terms of
volume and Y randomly selected inputs not in the top X.

« Have your Quality Assurance team examine the input/output and
rate the top five or ten results as relevant, somewhat relevant and
not relevant (and a fourth option: embarrassing).

* Pros: Real queries, real documents, real results.
« Cons: Time consuming. Y becomes too large for long-tail settings.
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Monitoring a Live System

» Return rates

e Conversion rates

« Abandonment rates
« Churn prediction

Carnegie
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Validating the model

Development Deployment
: A\
9 5 =R
* Ad-hoc * Log Analysis of a Beta System
* Focus Group * A/Btesting
* Toy Datasets * Empirical Testing a Live System
e Real World Datasets * Monitoring a Live System

Carnegie :
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[«
cCMU[G

Portugal Academy

Impact of an innovation technology

* Prototype phase:
« Lab experiments are the main drivers

» Groundbreaking invention unlocks innovation
« Leading tech companies and academic research A

Maturity

« Growth phase:
» Real-world experiments are the main drivers

* Problem is well understood
* Initial ideas generate high-gains

# of Inventions
Prototype

» Maturity phase:
* New ideas generate low-gains

« Mainly industry research
» Operations optimizations

60
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Hands-on practice
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T Fle EGt Vew R Kemel Tods Seftngs Help

® M ME.md X
Bt C % Lorenz pynd X [ Terminal 1 X @ Console 1 X % Data.ipynb X | ¥ READ %
a () 5 e k8 o $ Piodfeeas) O
Q
0

We explore the Lorenz system of differential equations: é
8/ noiebooks
_ Name . Last Modfied = oly-1x)
" o 2days ago y=px-y
W images 2daysago i= _lj: +xy
A Coplpmod 2days ago Let "
P Lefs change (@, , p) with ipywi et 4 "
« W Daaipyp Senis 1h Ipywidgets and examine the trajectories
Fasta jpyn 3 .
A Fastaipynh 2035390 froa loren; import solve lorenz
i ) teractive(solve lorenz, sigmas(p, g 5 o) rho=(9. 9
TR Tho=(6.9,56.0) )
S mintes
5 aw - QRDU'V\?W X =
9 Mminutes ago £ lorenz py R
o N Rigymp 26ays 20 X
iki h.org/wiki/lab setup
° 0.0 solve loren; =1
https://wiki.novasearch.org/wi i, g,y
267 10N to the Lore "By
o ure() i erential equatjons
23,00 axes([g, ¢

+11, Projections+34 )
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Programming practice =

N =l i
N Bt C A Lorenz.ipynd x [l Terminal 1 X [ Console 1 X | [ Data.ipynb X ¥ README.md X OU
B8 +X00» & C » Markdownv @ Python 3 (ipykemel) O
Q
We explore the Lorenz system of differential equations:
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Exercise

Send Miro chart to

1. Identify industry and domain

2. Characterize data

3. Select end-user

4. |dentify objectives and write example queries/use cases
5

o

by next thursday.

_ist required Al + ML + DS components
Vleasure success and value
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